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ABSTRACT

The affirmative outcome of PSS on Low Frequencyil@sions (LFO) damping is apparently clear. Appriape
designing of PSS can increase the affirmative ontcoAs a result, to improve the effectiveness, pinigect submits a
different scheme to reduce LFO. As the trouble $8Rlesign can be taken into account as a multetibgeoptimization
problem, this project proposes an improved Part8iearm Optimization (IPSO) algorithm, which is avabheuristic
optimization algorithm, to improve the searchingap and union speed of the Conventional PSO (CRE&foyithm.
A proper and inclusive fitness function is alsoraaiuced to obscure the extensive operating termghdt way, this
algorithm is working to recognize the optimal paedens of PSS for Single Machine related to Infifites (SMIB) system
by minimizing the fitness function. Simulation résundicate the superiority of the proposed altoni.
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INTRODUCTION

Particle swarm optimization is a heuristic globptimization method submit originally by Doctor Kexdy and
Eberhart in 1995(Kennedy J, Eberhart R, 1995; EdréiR, Kennedy J, 1995) It is developed from swantalligence and
is derived from the research of bird and fish flggdssage performance. While searching for foodbttes are either
scattered or go together before they trace theepldeere they can find the food. While the birds searching for food
from one place to another, there is always a lsied tan smell the food very well, that is, the hgdbservable of the
place where the food can be found, having the bfsttel resource information. Because they are pgdbie information,
especially the good information at any time whigarching the food from one place to another, cotetliby the good
information, the birds will finally flock to the pte where food can be found. To the extent thaicgmswam optimization
algorithm is concerned, solution swam is compaoetthié bird swarm, the birds’ moving from one plé@@nother is equal
to the development of the solution swarm, goodrimfation is equal to the most optimist solution, #mel food resource is
equal to the most optimist solution during the vehoburse. The most optimist solution can be wortedin particle
swarm optimization algorithm by the assistance \adre individual. The particle without quality andlume serves as
every individual, and the simple behavioral pattesrsynchronized for every particle to make clds tensity of the
whole particle swarm. This algorithm can be usewdok out the complex optimist problems. Owing t® rinany merits
including its simplicity and easy implementatiometalgorithm can be used widely in the fields sashfunction

optimization, the model classification, machinedstuneutral network training, the signal processigague system
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control, automatic adaptation control and etc (Zh&anchao, Jie Jing, Cui Zhihua, 2004, (In Chijjese

PSO ALGORITHM
» CPSO Algorithm
The CPSO algorithm is a relatively new generatiboambinatorial metaheuristic algorithms, whiclHfitted for
optimizing complex numerical. In the basic partisiearm optimization algorithm, particle swarm catsiof “n” particles,
and the location of every particle endures forghmspective clarification in D-dimensional spacheTparticles modify its
circumstance according to the following three ppies:

(1) to remain its inertia (2) to modify the conditi according to its most optimist location (3) todify the
condition as per the swarm’s most optimist locatidhe location of every particle in the swarm ifeafed both by the
most optimist location during its movement (indiwad practice) and the location of the most optingatticle in its
surrounding (near practice). When the whole pa&tiliarm is adjoining the particle, the most optinfesation of the
adjoining is equal to the one of the whole mosimijst particle; this algorithm is called the whd®SO. If the slight

adjoining is used in the algorithm, this algoritigralled the partial PSO.

CPSO starts with the random initialization of a swaf particles in the search space and works enstitial
behavior of the particles in the swarm. As a resufinds the global best solution by simply ading the trajectory of
every particle towards its own best location andaas the best particle of the swarm at every tatep (generation).
Though, the trajectory of every particle in thershaspace is adapted by dynamically altering tleation and velocity of
every particle, according to its own flying praetiand the flying practice of the other particlesthie search space.

The location and velocity of every particle are afedlin every iteration according to the followirguations:
vt =w v eirs (Cppesi—X°) +Car2 (Cgpesi %) (1)
x4 =x+v ¢ @)

where x'® and x represent the current and previous locations éndtlh iteration of particld, respectively;
v/'®and v are the current and previous velocities of particlespectivelyXnesi andXgmesiare the best location found by
particlei, so far and the best location found by the whalarm so far, respectivelyy €0, 1)is an inertia weight, which
determines how much the previous velocity is presirc, andc, are positive constant parameters called acceberati

coefficients; and, andr, are two independent random number suniformly itigted in the range of [0, 1].

In CPSO, Equation (4) is utilized to update the melocity according to its previous velocity ane tistance of
its current location from both its own personaltdesation and the global best location. The valtievery velocity can be
usually bounded to the range.f, , Vmad t0 control excessive roaming of the particlessaé the search space
[Xmin » Xmax ]- Then the particle flies toward a new locatiamtading to Equation (2). The procedure is repeaiad a
stopping criterion is reveryed.

Based on defining the neighborhood for every plartihere are two major models of CPSO algorithttedghe
global best and local best. In the local best mdtiel neighborhood of a particle is defined by saviixed particles while
in the global best model; the neighborhood of aigarconsists of the particles in the whole swaatthough, these
models give different performances on differenthbpemns, but global best model has a faster convesyspeed and a

higher probability of getting stuck in local optir(faoli et al.). The procedure of CPSO is summaraztbllows:
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Step 1:Initialize a swarm of particles with random loceits and velocities.

Step 2: Evaluate the fitness values of all particles, RBeestof every particle and its fithess value equal o it
current location and fitness value, andglestand its fithess value equal to the location atrefis value of the

best initial particle.
Step 3:Update the velocity and location of every partateording to Equations (1) and (2), respectively.
Step 4:Evaluate the fitness values of all particles.

Step 5 For every particle, compare its current fitneabig with the fitness value of ipbest If current value is
better, then updatgbestand its fitness value with the current locatiod &itness value.

Step 6:Determine the best particle of current whole swaiith the best fitness value. If the fitness vakibetter
than the fitness value ghbest then updatgbestand its fithess value with the location and fimealue of the

current best particle.
Step 7:1f a stopping criterion is met, then outmgltestand its fithess value; otherwise go to Step 3.
» The Proposed PSO Algorithm

Although CPSO has shown some important advanceproyiding high speed of convergence in specific
problems; however it does exhibits some shortajesometimes is easy to be trapped in local optimamd the
convergence rate decreased considerably in the patéod of evolution; when reverying a near opfirealution, the
algorithm stops optimizing, and thus the achievedueacy of algorithm is limited. Several modifieats have been
proposed in literature to improve the performant€BSO. Most of them are from one of the four categg: swarm

topology, diversity maintenance, combination witixiiary operations, and adaptive PSO.

Adaptation is the most promising category in PS@niapproaches are attempted to improve the peaforenof
CPSO by adaption of inertia weight. Empirical sasdof PSO with inertia weight have shown that atiely large inertia
weight have more global search ability while a tieidy small inertia weight results in a faster wergence.
Consequently, the inertia weight decreases aarlior nonlinear function of iterative generatimaddition to efficiently
control the local search and convergence to théagloptimum solution, time-varying acceleration fficents were
proposed in addition to the time-varying inertiaigi factor. Since the search process of PSO idimemr and highly
complicated, linearly and nonlinearly decreasingrtia weight and acceleration coefficients withfaedback taken from
the global optimum fitness cannot truly reflect #Hwtual search proceds fact, if the global fitness is large, the pelgs
are far away from the optimum point. Hence, a bétpwity is needed to globally search the solutipace and so the

inertia weight and acceleration coefficients muestdrger values.

Motivated by the aforementioned, in this projetie inertia weight and acceleration coefficients see as a
function of global optimum fitness during searctoqess of PSO algorithm. Based on this, two modibos are
incorporated into the CPSO algorithm that prevéatal convergence and provides excellent qualitfira result. In this

case, these parameters dynamically modify accordinige rate of global fitness improvement as feio
¢ = 1+1/ [1+exp (H*F (G))].i=1, 2 3

w=1/ [L+exp (-:#xF (G))"] (4)
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Initialize the swarm in anM-dimensional spacéMis the number of system parameters
DO
/I fitness evaluation and updating global memories
Evaluate fitness of particles, then
FOR i = 1 to number of particles
IF f (X)< f(PI))THEN P=X,f (Pi)=f (Xi)
IF f(Xi)<f(G) THEN G=Xi, f(G) =f(Xi) Pi=X; (P)=f(X)
END FOR
/I inertia weight and acceleration coefficientscotdtion
Calculate w using Equation (3)
Calculate c;and:; using Equation (4)
/[ updating velocity and locations of particles
Calculate new velocity of the particles using Equadn (1)
Calculate new location of the particles using Equé&bn (2)
UNTIL stop criteria is satisfied.
Figure 1: The Pseudo-Code of Proposed PSO

WhereF (G) is the fitness of global optimum irth iteration. The parametessand need to be predefined.
The value off can be set to the inverse of the value of glolpdintum fitness in the first iteration, i.6.=1/ F (Gy)).
Through the study of the non linear modulation partera andg reasonable set of choice for this parameter iveleér
within the range (1, 2). Moreover, under the asdionmand definition above, it can be concluded thak w<1, 1.5< ¢;<
2 and 1.5 c,<2. Considering Equations (3) and (4), it isobvithist the bigger global fitness requires the biggertia
weight and the bigger accelerate coefficients, wicd versa. Therefore, until the fitness of globatimum does not
improve significantly, the inertia weight and aerete coefficients are big since it still needsbglty explore the search
space to give the algorithm a better ability toidgpsearch and move out of the local optima. Cosely, these
parameters decrease fast to facilitate finer |l@ogdlorations since global optimum solution revergesear optimum.
The most important advantages of the proposed ittigorare to achieve faster convergence speed atter E®lution

accuracy with minimum incremental computationaldsur. Figure 1 illustrates the pseudo-code of prep@&SO.
PROBLEM FORMULATION

The stability maintenance in a power system is icemed as one of the most significant and esseasipéct of
power systems quality. In this section, the degigscedure is described. Figure 2 shows the systaerustudy, which

represents a Single Machine Infinite Bus systemIEMTIhe nonlinear equations of the system arergag Equation (5).
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Equations

The above equations can be linearized for smalllason around an operating point [1, 2, 5, anda6f can be

illustrated in the block diagram as shown in Fig2ir@s well.
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Figure 2: SIMB System

The state variables are defined as follows:
X = [AwASAEGAE] T

Then a SMIB system can be represented in the follpwstate-space form:

X= AX +Bu (6)
y=CX
Where
_D Kk e g
| M M M |
| wo 0 0 0
X = [AwASNE, AE] A= K11 )
0 Tdo TaoKzs  Tao
0 _Kaks _KaKe _ 1
l Ta Ta TAJ

The parameters constaritd to K6 represent the system parameters at a certairatagrercondition [5, 6].

Equation (8) describes the state equations ofytsiem in the presence of PSS.

By considering PSS, Figure 2 can be representédgase 3. Recall that a necessary and sufficientitinn for
the system to be stable is that the eigenvalueshefclosed-loop system must be lie in the left hank of
complex s -plane. First of all, the following eigafues have been proposed to achieve the leastidgmpLFO based on
LQR scheme by considering PSS [6]. In this projextachieve the desired performance, we also wessethigenvalues

values.
€iGndex (A) = {-18.62 — 11.6 -2.155 — 0.987 — 0.3124 + j6-96.102} (9)

Before proceeding with the optimization operatioagerformance criterion or an objective functidwowdd be
first defined. In general, the heuristic algoritlsich as PSO only needs to evaluate the objectivetifun to guide its
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search and no requirement for derivatives abousylstem. In this study, the sum of ratio betweesirdd eigenvalues and

real eigenvalues is considered as fitness. Sdotlwaving fitness function is defined.

— esired(i)
D BN RS (10)

Whereogesiei@ndo is the real part of desired eigenvaluesgigsand eig 4), respectively.
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Figure 3: Linearized Model of SMIB System
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Figure 4: Linearized Model of SMIB System with PSSAttendance
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It is noticeable that in order to suitable compafdéhe corresponding poles, the real part of ddsied actual
eigenvalues are sorted. In other words, the farthetial eigenvalue is compared to the farthestretbsigenvalue
whereas the nearest actual eigenvalue is compardtetnearest desired eigenvalue. In fact, it cordfithat we do not

have any unstable eigenvalues.

Now the constraint optimization problem is to fitlte optimal parameters of PSS (iR, T, T3, T4 and Kpsg
whereas the problem constraints are the optimizedmeter bounds. Therefore, the design problenbedormulated as

the following optimization problem. Minimizatiof subject to
Timin < Tl < -|—ima><,KminpSSS Kpssf Kpssmax

The proposed approach employs IPSO algorithm teedbis optimization problem and search for themal set
of PSS parameters. The typical ranges of thesengdeas are:

0.01<T1<1.5, 0.0K Ts< 1.5, 0.001< T,< 2,
0.001< T,< 2, 10< Kpss< 50(11)
SIMULATION RESULTS

This section is devoted to the assessment of pegpssheme. The power system stabilization usingtbposed
IPSO algorithm is evaluated by comparing with salveonventional schemes in different loading reginie order to this,

simulation results are carried out in five geneeaes:
Case 1:SMIB without PSS.
Case 2:SMIB with designed PSS based using LQR scheme.

Case 3:SMIB with designed PSS using lead

1+1.27
ControllerGe = 1.2 >
1+4+0.092s

Case 4:SMIB with designed PSS using CPSO algorithm.
Case 5:SMIB with designed PSS using the proposed IPSOritgn

The typical ranges of PSS parameters values arenadaed in the appendix. Moreover, to cover theewid

operating conditions of machine under study, tlaeliog regime is opted as Heavy loading regime
(P= 1-2p.u. ,Q= 0-2p.u. )

Hence, the proposed controller is designed basdtleoregimes. Testing the proposed designed cdettiislalso
checked on the different operating conditions. Plaeameters of controllers are tuned using the PigOritoms by
minimizing the fitness function given in Equatid).(To achieve this, a proper choice of the PSQ@upaters is required.
To perform fair comparison, the same computatiefialrt is used in both of the PSO algorithms. Thgrehe population
size and maximum generation are considered as @@, respectively. Moreover, in both CPSO anddR&jorithms,
we setc;= ¢,=2 andV . andV ,, are equal to the length of the search space. Fuarthre, the inertia weight in CPSO is
set to 0.4. After 100 iterations, the optimized R@&meters values using IPSO algorithm are detedras follows:

T1=0.05,T2=0.001,T3=1.39,T4=0.001, Kp55=49
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Simulation results are shown in Figures 5-12.

Referring to Figures 5-12, it can be concluded ¢ffectiveness of the proposed approach to dampthmut

electromechanical oscillation and enhance the pmdace of system in the different loading reginfdgough the results

of proposed algorithm is better than CPSO algorithat significant advantage of proposed PSO iseims of

convergence speed.

25

20 —

T

L L L L L
u] 0.5 1 1.5 2 2.5 3
Time (s)

Figure 5: Electrical Power R, before Optimization

o

X

£ . " . - —
o (13 1 1.5 2 FE] a
Timm (u)

Figure 6: Electrical Power R, after Optimization

u

pss

014

012

01r

0.05 -

0.06 -

0.04 -

0.02

RENIEN

0.04 . h . . .
0 0.5 1 1.5 2 25 3
Time (g)

Figure 7: Power System Stability Constant Yssbefore Optimization

Impact Factor (JCC): 2.4886

Index Copernicus Value (ICV): 3.0



A Novel PSO Algorithm for Optimal Power System Stabizer 19

Upss
0.5 T

1
2|
3
4

L L L

1.8 2 2.5 3

Time (&)
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Figure 9: Rotor Speed Variation® before Optimization
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Figure 12: Rotor Angle Variation 4 after Optimization
CONCLUSIONS

The AVR function to regulate voltage can reduce pliag torque, the generator’s stability limitationdapower
network. In addition, to eliminating the negativifeet of AVR, one can guarantee the network stgbitiy using a
feedback from a signal of rotor speed deviationd @ngaging it in the controlling excitation voltagehis feedback is
so-called Power System Stabilizer (PSS) that camawe the stability of network by its proper desard damp the LFO.
In this project, the IPSO algorithm was introduc&dis proposed IPSO was utilized to find the optienparameters of
PSS for SMIB system by minimizing the fitness fumst Using the proposed algorithm, the LFO can ééuced
appropriately. The main advantage of proposed #lgoris to achieve faster convergence speed wheheaappropriate
performance of system at different loading condsiovas guaranteed. Simulation results demonsttagedffectiveness of

developed technique

NOMENCLATURES
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P

K4= C

*PPr(+C1)?
— P C1+Q ]
KS_C4X€V2+Qxe [ 6 P24(Q+Cy)?

K=C /P2+(C1+Q)2 [ C1%q(C1+Q)
om ¢ T P2+(Q+C1)?

V2+Qxe
Tm: Mechanical torque
Te. Electrical torque
V; Terminal voltage
E,: Inducte@mproportional to field current
E 1¢: Generator field voltage
V.. Reference value of generator field voltage
Xd' X, Xq: Generator, d-axis and g-axis synchronous reactanespectively.
Xe. Line reactance
V: Infinite bus bar voltage
Tqo: Open circuit direct-axis transient time constant
M: Inertia coefficient
D: Damping factor
Ka TA AVR and exciter gain and time constant, respetyiv
Xe=0.4%=1.55%=1.6 x4’ =0.32,V =1, f =50Hz T, =6secM =10, T ,=0.05secK ,=25,D =0
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